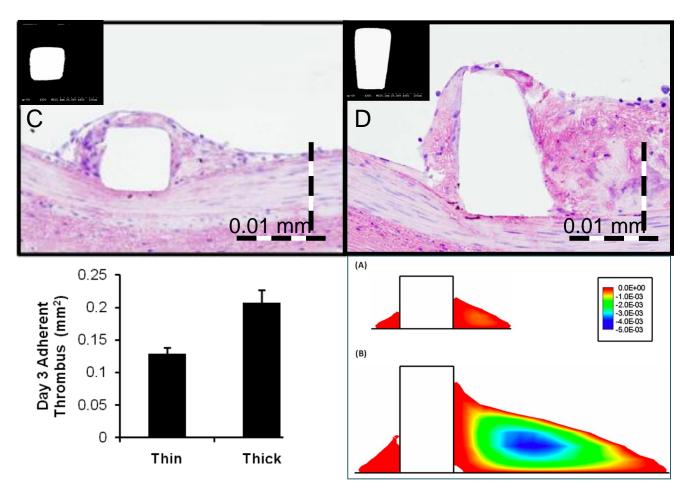
Ultrathin Strut Drug Eluting Stents in Complex Patients Setting New Standards of Care and Comparison

David E. Kandzari, MD, FACC, FSCAI

Chief Scientific Officer Director, Interventional Cardiology

Piedmont Heart Institute Atlanta, Georgia david.kandzari@piedmont.org

Disclosure


Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship	Company
Institutional Grant/Research Support	Biotronik, Boston Scientific, Medtronic CardioVascular, Medinol, Orbus Neich
Consulting Fees/Honoraria	Boston Scientific Corporation, Medtronic CardioVascular, Biotronik, Cardinal Health
Major Stock Shareholder/Equity	None
Royalty Income	None
Ownership/Founder	None
Intellectual Property Rights	None
Other Financial Benefit	None

Revisiting the Thin Strut Hypothesis (or Principle)

 Thinner stent struts produce less inflammation, vessel injury, neointimal proliferation and thrombus formation compared with thicker struts¹

¹Kolandaivelu. Cirulation 2011; Soucy. EuroIntervention 2010; Kastrati. Circulation 2001; Pache. JACC 2003

Revisiting the Thin Strut Hypothesis (or Principle)

- Thinner stent struts produce less inflammation, vessel injury, neointimal proliferation and thrombus formation compared with thicker struts¹
- Over 15 years of DES iteration, progression to thinner struts is associated with lower rates of target vessel MI
 - Stainless steel (132 μm to 140 μm) to chromium alloys (81 μm to 91 μm) translate to ~40% to ~80% reductions in both procedural and late-term target vessel Ml^2
- In BIOFLOW V, an ~20 μ m difference between BP SES and DP EES is associated with ~45% reductions in TV MI and TLR and >50% reduction in ST at 2 years

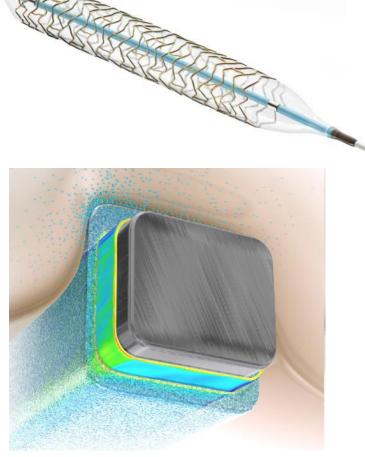
¹Kolandaivelu. Cirulation 2011; Soucy. EuroIntervention 2010; Kastrati. Circulation 2001; Pache. JACC 2003 ²ENDEAVOR III; SPIRIT III; ENDEAVOR IV; ENDEAVOR Pooled Analysis; SPIRIT IV

Ultra-thin (<70 μ m) vs Thicker Strut 2nd Generation DES: 1-yr TLF 10 RCTs, 11,658 pts: Orsiro (60 μ m), MiStent (64 μ m), BioMime (65 μ m)

	Ultra-tl	hin	2 nd Gene	ration			% Weight
Study	Events	Ν	Events	Ν		RR (95% CI)	(D+L)
Orsiro BIOFLOW II BIOFLOW IV BIOFLOW V BIORESORT BIOSCIENCE ORIENT PRISON IV SORT OUT VII D+L Subtotal (I-squar I-V Subtotal MiStent	19 20 52 47 69 6 6 48 red = 0.0%,	298 354 884 1169 1063 250 165 1261 <i>p</i> =0.88	12 9 41 53 70 4 8 58 1)	154 176 450 1173 1056 122 165 1264		$\begin{array}{c} 0.82 \ (0.40, \ 1.69) \\ 1.10 \ (0.50, \ 2.43) \\ 0.65 \ (0.43, \ 0.97) \\ 0.89 \ (0.60, \ 1.32) \\ 0.98 \ (0.70, \ 1.37) \\ 0.73 \ (0.21, \ 2.59) \\ 0.75 \ (0.26, \ 2.16) \\ 0.83 \ (0.57, \ 1.22) \\ 0.85 \ (0.71, \ 1.01) \\ 0.85 \ (0.71, \ 1.01) \end{array}$	4.83 4.08 15.07 16.37 22.84 1.58 2.25 17.26 84.29
DESSOLVE-III D+L Subtotal (I-squar I-V Subtotal BioMime	40 red = NA, <i>p</i>	703 = NA)	45	695		0.88 (0.57, 1.35) 0.88 (0.57, 1.35) 0.88 (0.57, 1.35)	13.92 13.92
Merit-V D+L Subtotal (I-squar I-V Subtotal All Stents	5 red = NA, p	170 = NA)	6	86		0.42 (0.13, 1.38) 0.42 (0.13, 1.38) 0.42 (0.13, 1.38)	1.79 1.79
D+L Subtotal (I ² = 0.0 I-V Subtotal	0%, <i>p</i> = 0.88	3)			0	0.84 (0.72, 0.99) 0.84 (0.72, 0.99)	100.00
Driven by les	s TV-M	l with	nno		0.1 1	10	
differences in Bangalore et al. Circ Interv			LR	Favors		vors 2 nd Generation	

Bangalore et al. Circ Interventions 2018

Ultra-thin (<70 μm) vs Thicker Strut 2nd Generation DES: 1-yr Def/Prob Stent Thrombosis 10 RCTs, 11,658 pts: Orsiro (60 μm), MiStent (64 μm), BioMime (65 μm)


	Ultra-th	nin	2 nd Gener	ation			% Weight
Study	Events	Ν	Events	Ν		RR (95% CI)	(D+L)
Orsiro					11		
BIOFLOW II	0	298	0	154	e	0.52 (0.01, 26.04)	0.78
BIOFLOW IV	3	354	0	176		3 .48(0.18, 67.38)	1.37
BIOFLOW V	4	884	3	450		0.68 (0.15, 3.03)	5.36
BIORESORT	5	1169	6	1173		0.84 (0.26, 2.74)	8.53
BIOSCIENCE	29	1063	35	1056		0.82 (0.50, 1.35)	49.59
	0	250	0	122		0.49 (0.01, 24.59)	0.78
	11	165	2	165		0.50 (0.05, 5.51)	2.08
SORT OUT VII D+L Subtotal (I-squar	11	1261	20	1264		0.55 (0.26, 1.15) 0.74 (0.51, 1.07)	22.19 90.69
I-V Subtotal	100 - 0.0	p=0.93	0)		X	0.74 (0.51, 1.07)	90.09
MiStent						0.74(0.01, 1.07)	
DESSOLVE-III	5	703	6	695		0.82 (0.25, 2.70)	8.53
D+L Subtotal (I-squar			0	095		0.82 (0.25, 2.70)	8.53
I-V Subtotal	red = NA, p	- 11/4)				0.82 (0.25, 2.70)	0.00
BioMime						0.02 (0.20, 2.10)	
Merit-V	0	170	0	86		0.51 (0.01, 25.49)	1.79
D+L Subtotal (I-squar			U	00		0.51 (0.01, 25.49)	1.79
I-V Subtotal						0.51 (0.01, 25.49)	
All Stents							
D+L Subtotal ($l^2 = 0.0$	$0\% \ n = 0.99$	3)				0.74 (0.53, 1.05)	100.00
I-V Subtotal	, p 0.00	5)			X	0.74 (0.53, 1.05)	100.00
						0.14 (0.00, 1.00)	
					.1 1 10		
				Favor		2 nd Generation	

Bangalore et al. Circ Interventions 2018

Orsiro Ultrathin Strut (BP SES) Stent System

Stent material	L-605 Cobalt-Chromium	
Strut thickness	60 μm*	
Polymer material	Poly-L-lactic acid (PLLA)	
Polymer type	Bioresorbable, asymmetric circumferential thickness	
Passive coating	Amorphous silicon carbide	
Antiproliferative drug	Sirolimus (1.4 μg/mm²), >80% eluted in first 90 days	

*For 2.25mm to 3.0mm diameter stents, 80 μ m for >3.0 mm diameter stents

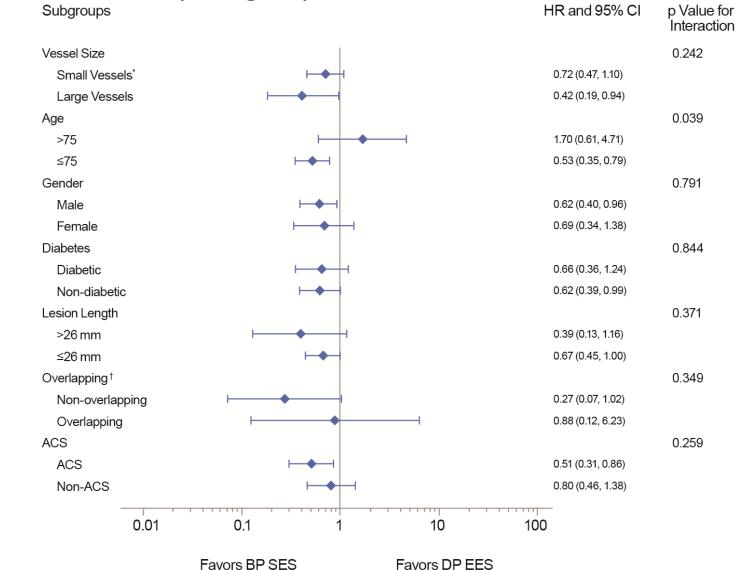
BIOFLOW V Primary Endpoint: 12 Month Target Lesion Failure

	Orsiro BP SES (n=884)	Xience DP EES (n=450)	P value
Target lesion failure	6.2%	9.6%	0.040
Cardiac death	0.1%	0.7%	0.115
Target vessel MI	4.7%	8.3%	0.016
Clinically-driven TLR	2.0%	2.4%	0.686

All data represented as intention to treat

Kandzari et al. Lancet 2017

BIOFLOW V 2 Year Outcomes


	Orsiro BP SES (n=884)	Xience DP EES (n=450)	P value
Target lesion failure	7.5%	11.9%	0.015
Cardiac death	0.6%	0.5%	1.0
Target vessel MI	5.3%	9.5%	0.01
Ischemia-driven TLR	2.6%	4.9%	0.04
Cardiac Death/MI	7.0%	10.4%	0.047
Definite Stent Thrombosis	0.5%	1.2%	0.17
Definite Late/Very Late ST	0.1%	1.0%	0.045
All data represented as intention to treat			

Kandzari et al. JACC 2018

BIOFLOW V

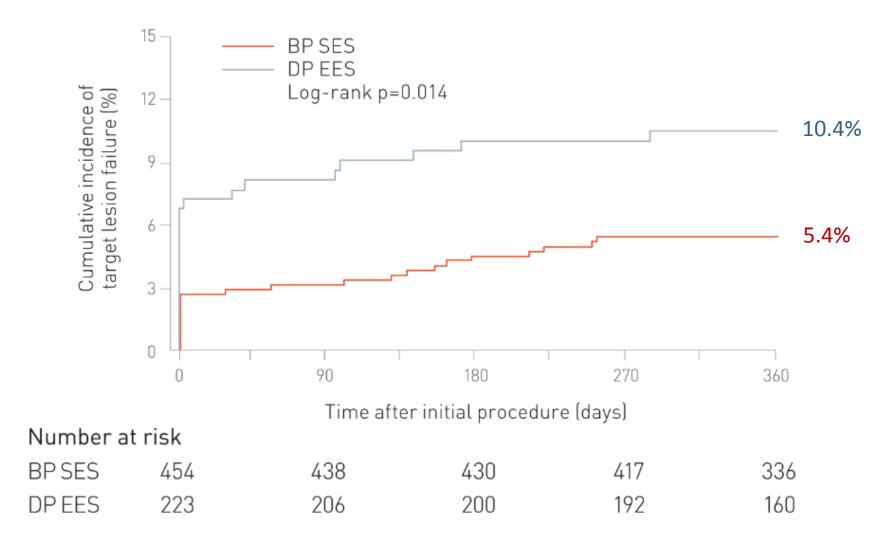
Target Lesion Failure at 2 Years by Subgroups

*Small vessels defined as 2.75 mm or smaller. + Non-overlapping vs. Overlapping stents subgroup analysis is only performed on subjects with lesion length > 26 mm.

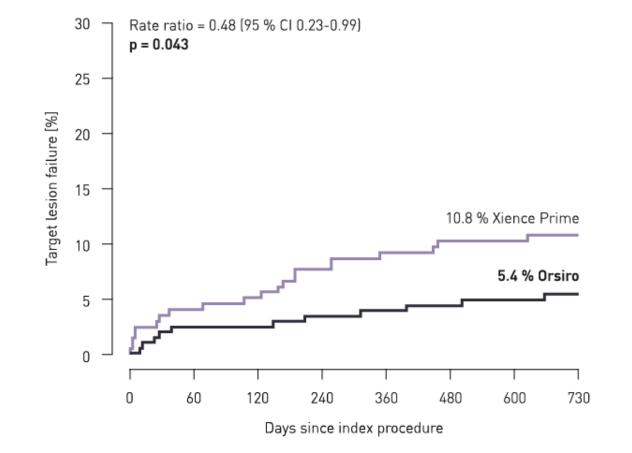
Small Vessel Disease* Subgroup Analyses from BIOFLOW V, BIORESORT and BIOSCIENCE

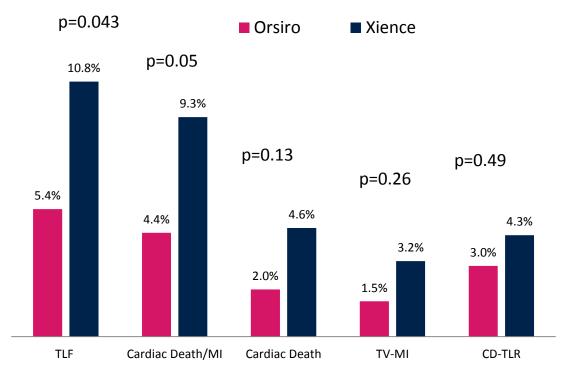
BIOFLOW-V ¹ Subgroups			Favors Orsiro <	Favors other DES >	HR and 95% CI	p Value for Interaction	
Vessel Size Small vessels* Large vessels				•	0.72 (0.47-1.10) 0.42 (0.19-0.94)	0.242	2y TLF
BIO-RESORT					Hazard ratio	T	
	SES	ZES	Fores	tplot	(95% CI)	P interaction	
Small vessel <2.75 mm	49/731 (6.7) 27/438 (6.2)	67/667 (10.0) 29/506 (5.7)			0.66 (0.46 – 0.95) 1.07 (0.64 – 1.81)	0.14	2y TVI

BIOSCIENCE ³


	BP SES (n=1063)*	DP EES (n=1056)*	Rate ratio (95% CI)	pvalue	Pinteraction	
Small vessels					0.90	1v
Yes	27/360	32/404	0.95 (0.57-1.59)	0.85		тy
No	40/696	38/649	1.00 (0.64-1.55)	0.98		TLF

*Small vessels defined as <2.75 mm


¹Kandzari D et al. JACC 2018 ²Kok MM, Zocca P, Buiten RA, et al. EuroIntervention 2018 ³Pilgrim T, al. Lancet 2014


BIOFLOW V Acute Coronary Syndrome Subgroup Analysis

BIOFLOW V STEMI Subgroup Analysis

•

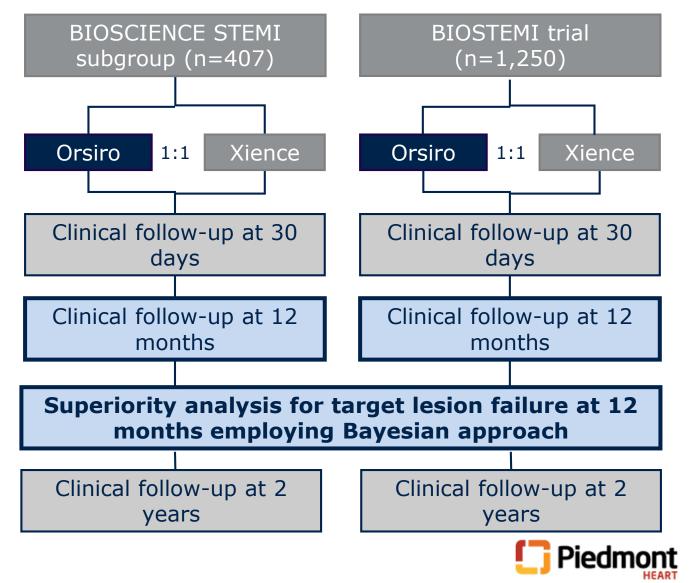
BIOSCIENCE

BIOSTEMI

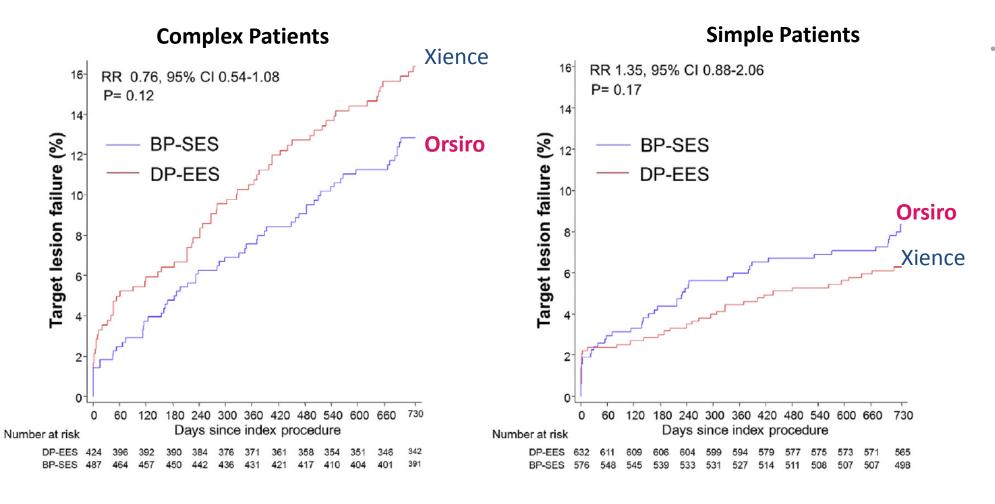
DESIGN

Prospective, multicenter, randomized, controlled, superiority trial.

OBJECTIVE


To investigate the superiority of ultrathin-strut Orsiro BP-SES to Xience DP-EES in STEMI patients undergoing primary PCI.

COORDINATING CLINICAL INVESTIGATORS


Prof. Dr. Thomas Pilgrim, Bern, Switzerland Dr. Juan F. Iglesias, Lausanne, Switzerland PD Dr. Olivier Muller Lausanne, Switzerland

PRIMARY ENDPOINT

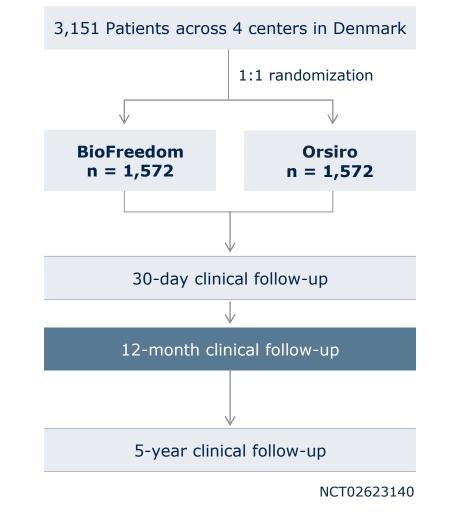
Target Lesion Failure (TLF) at 12 months, defined as a composite of cardiac death, target vessel re-infarction, or clinically-indicated TLR.

BIOSCIENCE Impact of Patient and Lesion Complexity on Target Lesion Failure

- **Complex patients** defined by the presence of at least 1 of the following:
 - STEMI within 24 hours
 - Left ventricular ejection fraction 30%
 - Renal dysfunction
 (glomerular filtration rate <60 ml/min)
 - Insulin treated diabetes
 - Treatment of ostial lesion, bypass graft, unprotected left main lesion, or >2 vessels.

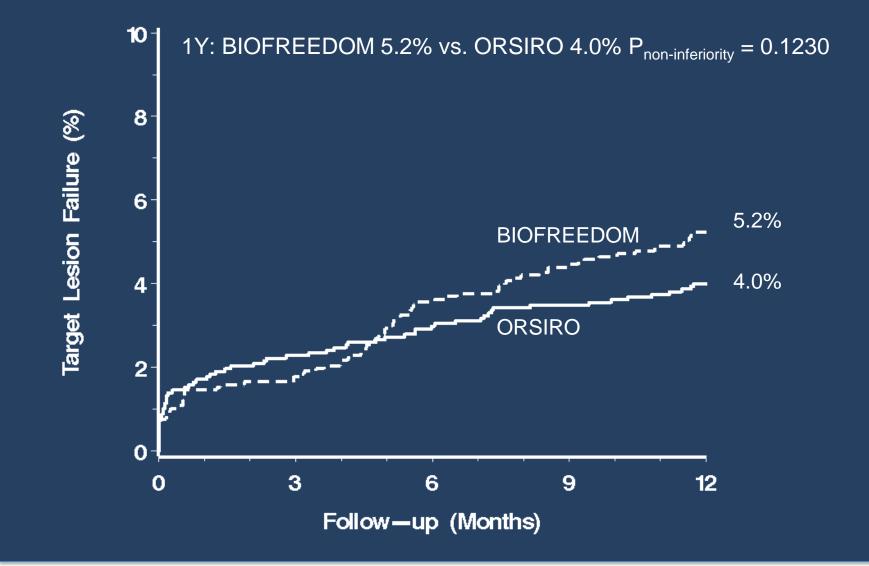
SORT OUT IX

Design

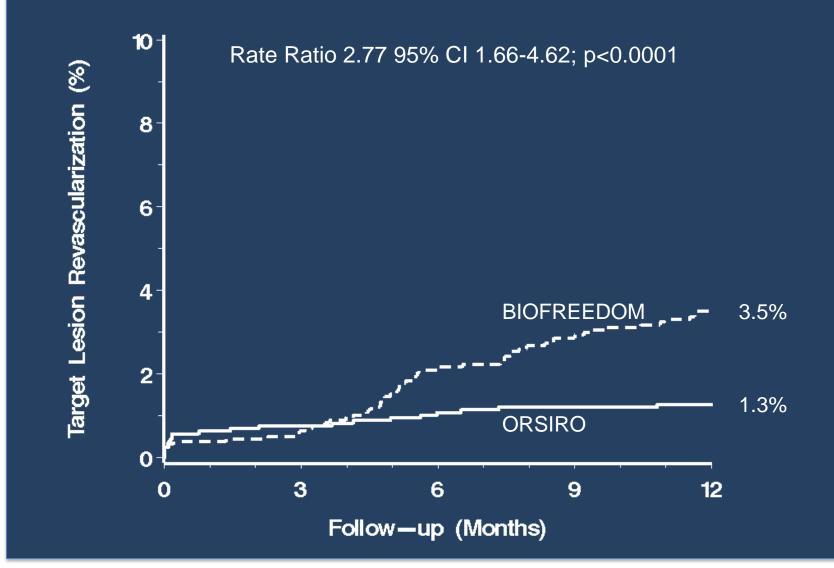

Randomized, multicenter, single-blind, all-comers, two-arm, non-inferiority trial comparing BioFreedom to Orsiro

Objective

To compare the safety and efficacy of the polymer free biolimus A9-coated BioFreedom stent and the thin strut biodegradable polymer sirolimus-eluting Orsiro stent in an all-comer population


Primary Endpoint

Target lesion failure: a composite of cardiac death, myocardial infarction (not related to other than index lesion) or target lesion revascularization within 1 year



STEMI 24% B2/C 61% Bifurcation 20% CTO 5%

SORT OUT IX Primary Endpoint: TLF at 1 Year

SORT OUT IX Target Lesion Revascularization at 1 Year

Okkels Jensen et al. on behalf SORT OUT IX Investigators, TCT 2018 - Oral presentation

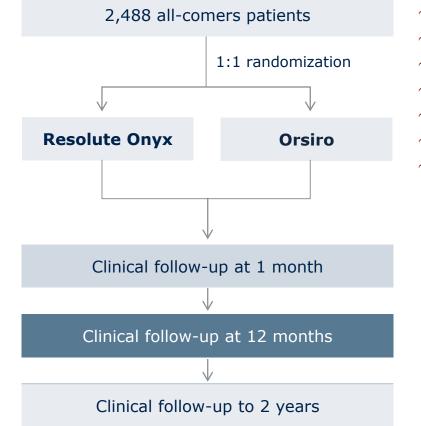
SORT OUT IX TLF at 1 Year: Subgroup Analysis

Pre-specified Subgroups	Risk Ratio	Ever	Events (%)		
			Sirolimus-eluting Stent	Interaction	
Acute Coronary Syndrome No	● 1.74 (1.08 - 2.79)	48 (6.4)	27 (3.7)		
Acute Coronary Syndrome Yes	0.97 (0.61 – 1.56)	34 (4.1)	36 (4.2)	0.09	
Age <=65	1.60 (0.86 – 2.97)	25 (3.8)	17 (2.4)		
Age >65	- 1.17 (0.79 – 1.73)	57 (6.3)	46 (5.3)	0.40	
Diabetes Melitus No	1.34 (0.90 – 1.99)	57 (4.5)	43 (3.4)		
Diabetes Melitus Yes	1.23 (0.68 – 2.23)	25 (8.2)	20 (6.6)	0.83	
AD No	1.52 (0.93 – 2.48)	41 (5.2)	27 (3.4)		
AD Yes	1.15 (0.73 – 1.80)	41 (5.2)	36 (4.5)	0.40	
Lesion Type C	1.21 (0.76 – 1.92)	41 (6.9)	33(5.6)		
esion Type Not C	1.40 (0.87 – 2.24)	41 (4.2)	30(3.0)	0.68	
vlale No	1.14 (0.57 – 2.30)	17 (4.8)	15 (4.2)		
Male Yes	1.36 (0.93 – 1.98)	65 (5.3)	48 (3.9)	0.67	
Multivessel Disease No	1.24 (0.85 – 1.79)	63 (4.8)	51 (3.9)		
Multivessel Disease Yes	1.62 (0.78 – 3.36)	19 (7.3)	12 (4.5)	0.52	
Dne Stent Per Patient No	1.16 (0.75 – 1.78)	45 (4.5)	39 (3.9)		
Dne Stent Per Patient Yes	1.50 (0.88 – 2.56)	34 (6.0)	23 (4.0)	0.45	
Previous MI No	1.33 (0.91 – 1.93)	65 (5.0)	49 (3.8)		
Previous MI Yes	1.62 (0.70 – 3.77)	14 (6.3)	9 (3.8)	0.36	
Previous PCI No	1.22 (0.81 – 1.84)	52 (4.3)	43 (3.5)		
Previous PCI Yes	• 1.75 (0.92 - 3.30)	27 (8.4)	15 (4.8)	0.98	
TEMI No	1.39 (0.96 – 2.02)	68 (5.6)	48 (4.1)		
TEMI Yes	1.01 (0.50 – 2.10)	14 (3.8)	15 (3.8)	0.44	
Overall Overall	1.31 (0.94 – 1.82)	82 (5.2)	63 (4.0)		

Okkels Jensen et al. on behalf SORT OUT IX Investigators, TCT 2018 – Oral presentation

A Randomized Trial Evaluating a Thin Composite Wire Strut Durable Polymer-Based DES Compared with an Ultra-Thin Strut Bioresorbable Polymer-Based DES in an All-Comers Patient Population - BIONYX BION

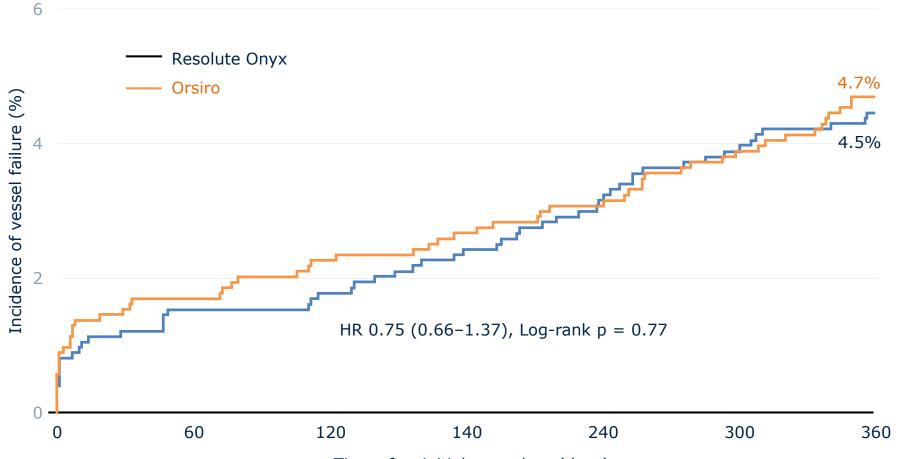
Design


International, multi-center, assessor- and patient-blinded, investigator-initiated, prospective, non-inferiority 1:1 randomized controlled trial comparing Resolute Onyx with Orsiro in an all-comers population

Objective

Evaluate the safety and effectiveness of Resolute Onyx compared to Orsiro in 2,488 all-comers patients

Primary Endpoint

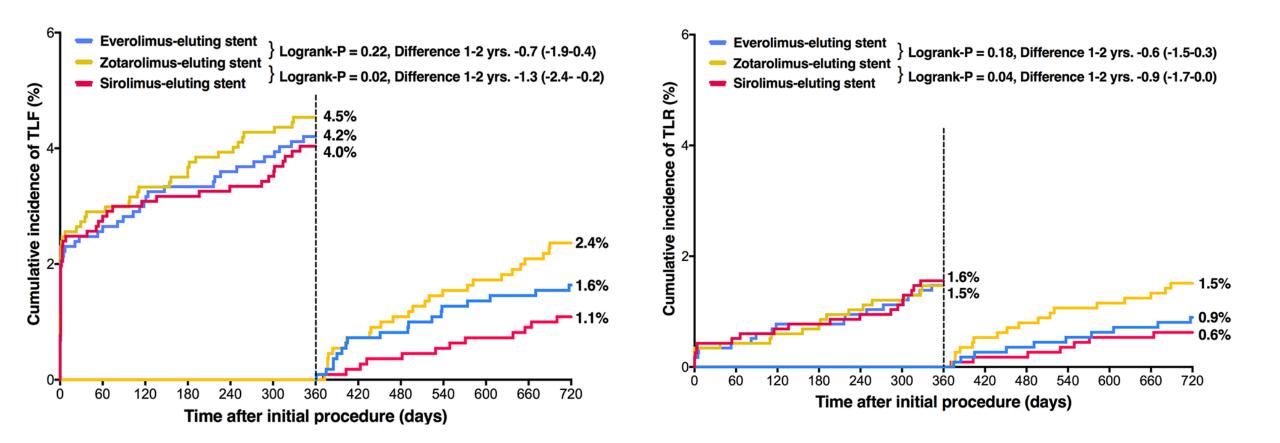

Target Vessel Failure (TVF) rate at 12 months

- $\sim 50\%$ NSTEMI/STEMI
- $\sim 20\%$ Diabetes
- ~ 18% Multivessel PCI
- ~ 79% B2/C
- ~ 31% Bifurcation
- \sim 15% Severe Ca²⁺
- ~ 3% CTO

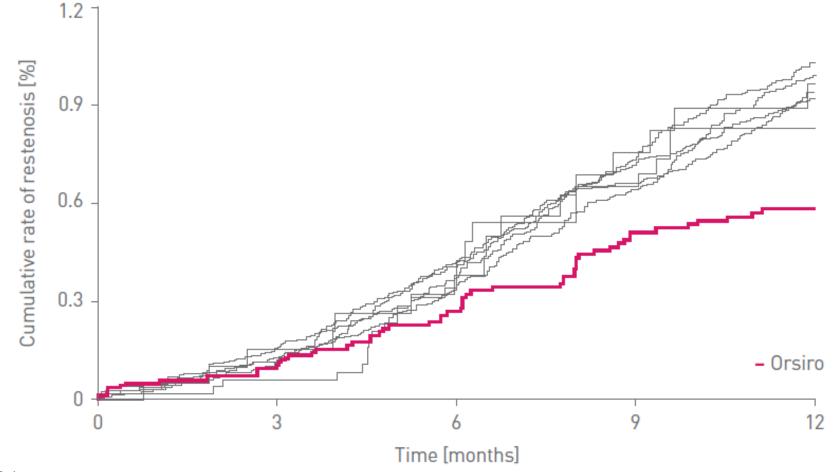
BIONYX Primary Endpoint: TVF at 1 Year



Time after initial procedure (days)

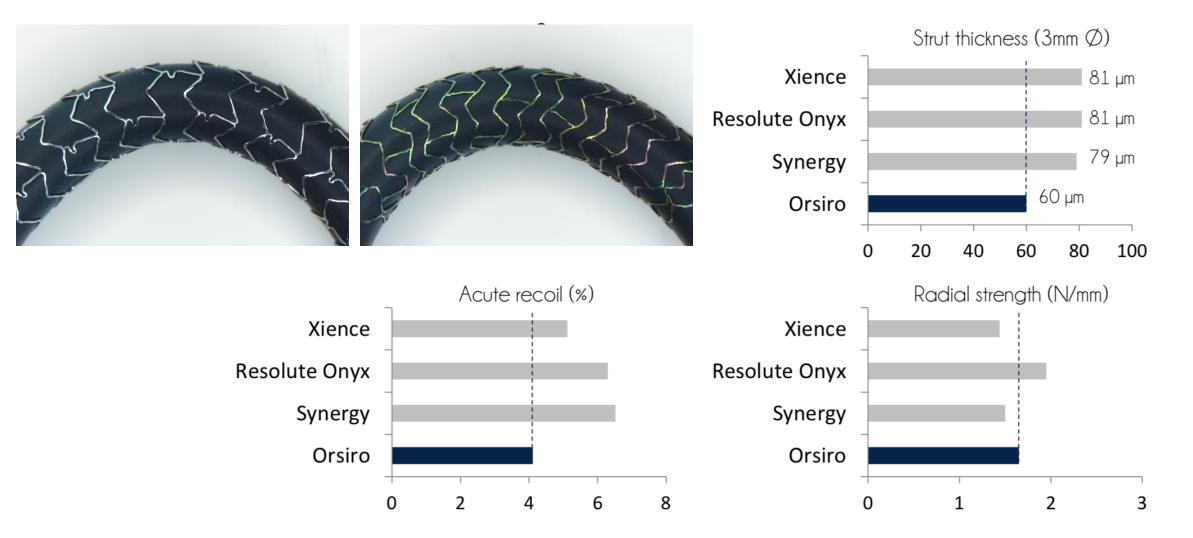

BIORESORT Target Vessel Failure, 2 Years

N=3,514 All Comers

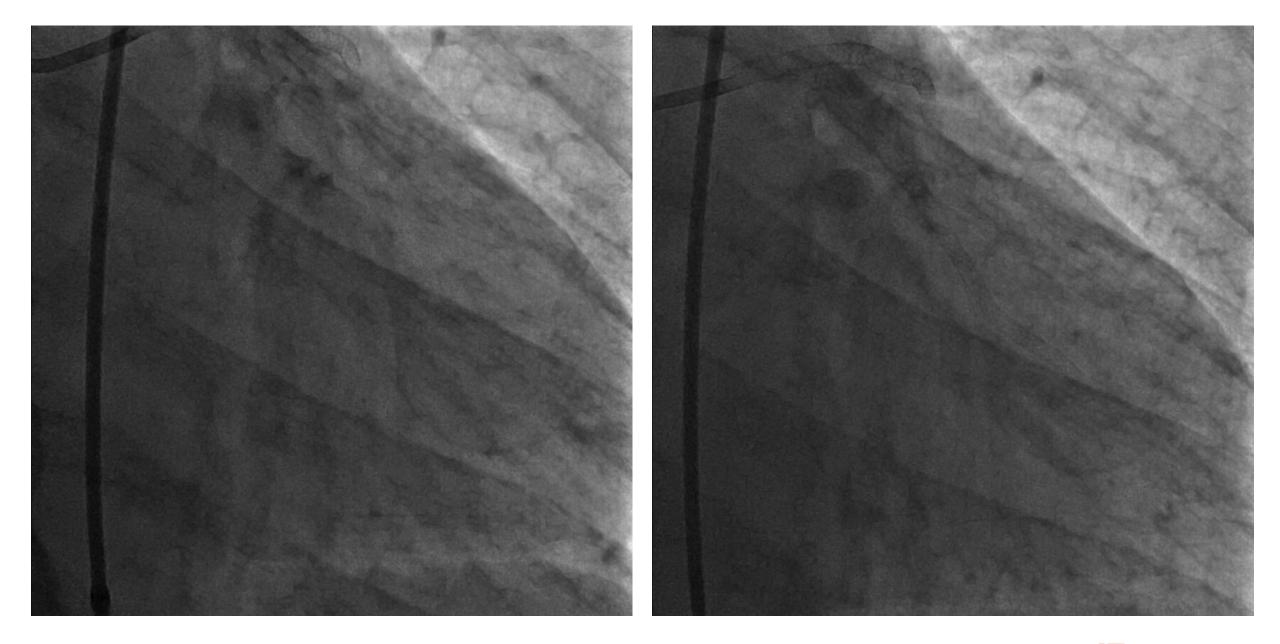

BIORESORT

Target Lesion Failure and TLR, Landmark Analyses 1 to 2 Years

SCAAR Registry Clinical Restenosis Through 1 Year in Sweden, 2007 Through January 2018

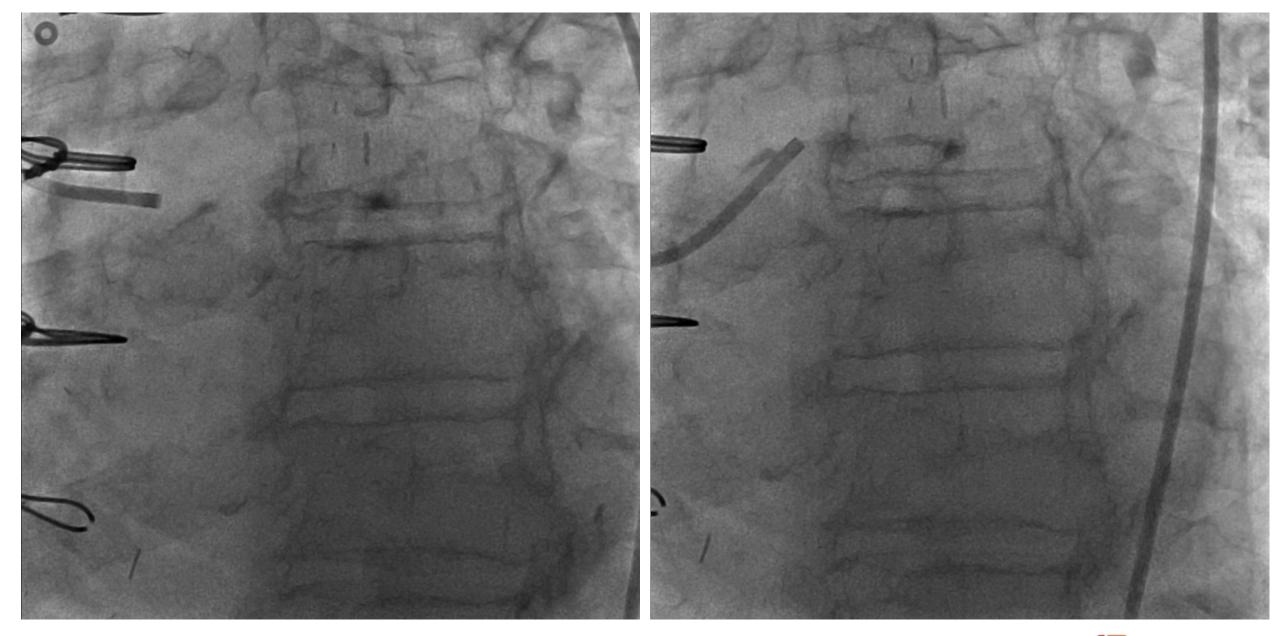

Piedmont

For stents implanted at least 1000 times

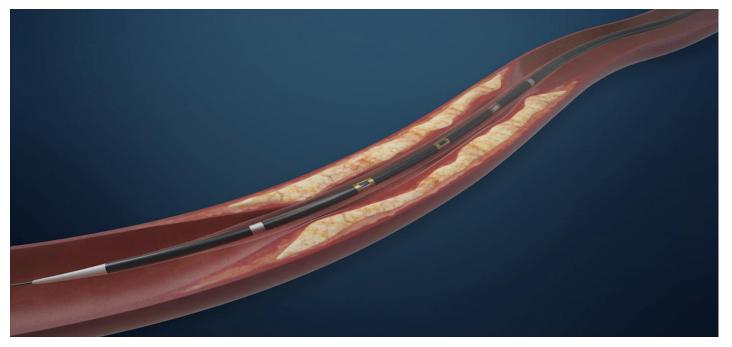

Adapted from SCAAR: http://www.ucr.uu.se/swedeheart/images/stories/stent_reports/20180123/9Restenosis_first_year_in_most_used_stents.gif,

**other DES include: Resolute Integrity, Promus Premier, Synergy, Biofreedom, Resolute Onyx, Xience ProX

Comparative Properties of Ultrathin Strut vs Thin Strut DES Struts are not Unidimensional

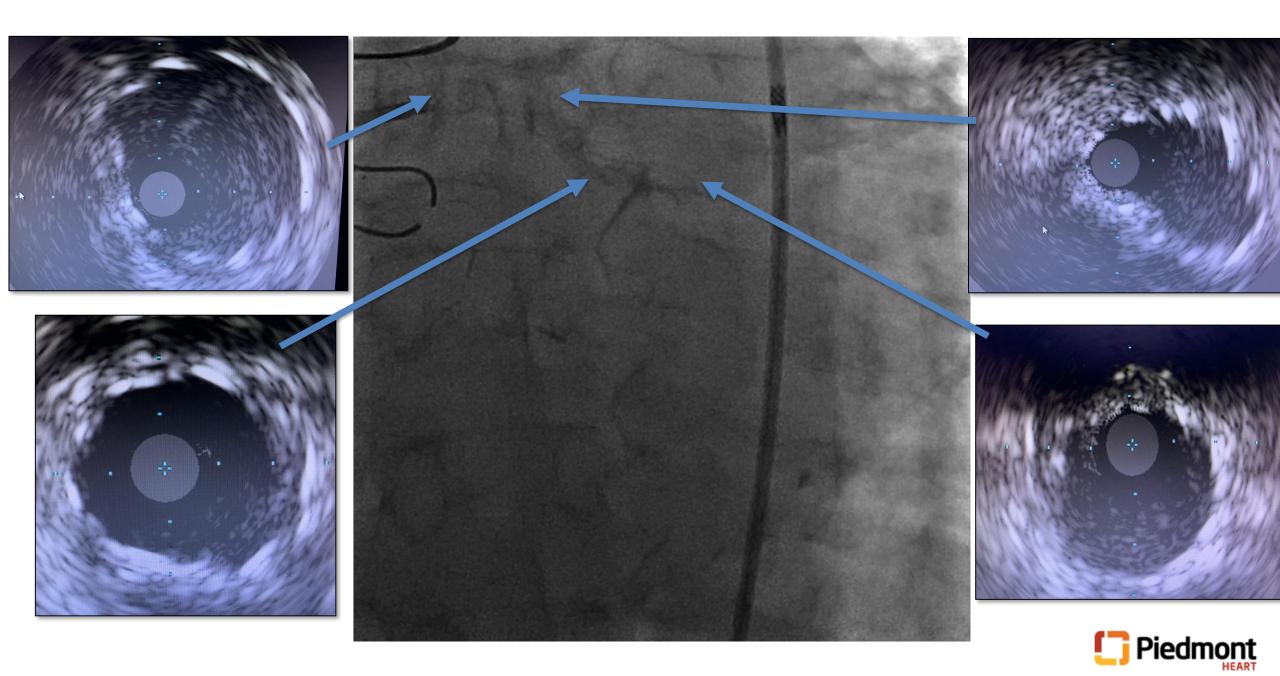


Bench test performed by independent laboratory - IIB // BIOTRONIK data on file Source: S James, Evaluating the broad clinical utility of ultrathin bioabsorbable polymer DES; Oral presentation; Presented at: EuroPCR 2018; MAY 24





Intravascular Lithotripsy (IVL) Shockwave Medical



Ultra-Thin Strut DES in Complex Indications and Lesions Conclusions

- Emerging evidence suggests significantly lower MI, ST and TLR with ultrathin strut DES vs thin strut DES
 - Clinical observations supported by preclinical studies demonstrating improved healing and reduced injury, thrombus deposition
- Treatment with Orisiro ultrathin strut BP SES indicates comparable, if not superior, clinical outcomes compared with thin strut EES and ZES in RCTs inclusive of complex patient indications and anatomy
- Evolution of ultrathin strut stent designs indicates improved performance (deliverability, trackability) without compromising radial strength and scaffolding properties
 - Stent performance and characteristics represent multiple variables other than strut thickness alone

